Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy.

Identifieur interne : 000B34 ( Main/Exploration ); précédent : 000B33; suivant : 000B35

Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy.

Auteurs : Ariadne Vlahakis [États-Unis] ; Nerea Lopez Muniozguren [États-Unis] ; Ted Powers [États-Unis]

Source :

RBID : pubmed:27899413

Descripteurs français

English descriptors

Abstract

Autophagy is a catabolic process that recycles cytoplasmic contents and is crucial for cell survival during stress. The target of rapamycin (TOR) kinase regulates autophagy as part of two distinct protein complexes, TORC1 and TORC2. TORC1 negatively regulates autophagy according to nitrogen availability. In contrast, TORC2 functions as a positive regulator of autophagy during amino acid starvation, via its target kinase Ypk1, by repressing the activity of the calcium-dependent phosphatase calcineurin and promoting the general amino acid control (GAAC) response. Precisely how TORC2-Ypk1 signaling regulates calcineurin within this pathway remains unknown. Here we demonstrate that activation of calcineurin requires Mid1, an endoplasmic reticulum-localized calcium channel regulatory protein implicated in the oxidative stress response. We find that normal mitochondrial respiration is perturbed in TORC2-Ypk1-deficient cells, which results in the accumulation of mitochondrial-derived reactive oxygen species that signal to Mid1 to activate calcineurin, thereby inhibiting the GAAC response and autophagy. These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation.

DOI: 10.1083/jcb.201605030
PubMed: 27899413
PubMed Central: PMC5166500


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy.</title>
<author>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lopez Muniozguren, Nerea" sort="Lopez Muniozguren, Nerea" uniqKey="Lopez Muniozguren N" first="Nerea" last="Lopez Muniozguren">Nerea Lopez Muniozguren</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 tpowers@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis</wicri:regionArea>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27899413</idno>
<idno type="pmid">27899413</idno>
<idno type="doi">10.1083/jcb.201605030</idno>
<idno type="pmc">PMC5166500</idno>
<idno type="wicri:Area/Main/Corpus">000929</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000929</idno>
<idno type="wicri:Area/Main/Curation">000929</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000929</idno>
<idno type="wicri:Area/Main/Exploration">000929</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy.</title>
<author>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lopez Muniozguren, Nerea" sort="Lopez Muniozguren, Nerea" uniqKey="Lopez Muniozguren N" first="Nerea" last="Lopez Muniozguren">Nerea Lopez Muniozguren</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 tpowers@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis</wicri:regionArea>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of cell biology</title>
<idno type="eISSN">1540-8140</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Autophagy (MeSH)</term>
<term>Calcineurin (metabolism)</term>
<term>Calcium Channels (metabolism)</term>
<term>Cell Respiration (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Autophagie (MeSH)</term>
<term>Calcineurine (métabolisme)</term>
<term>Canaux calciques (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Calcineurin</term>
<term>Calcium Channels</term>
<term>Membrane Glycoproteins</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Calcineurine</term>
<term>Canaux calciques</term>
<term>Complexes multiprotéiques</term>
<term>Glycoprotéines membranaires</term>
<term>Mitochondries</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Cell Respiration</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Modèles biologiques</term>
<term>Respiration cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy is a catabolic process that recycles cytoplasmic contents and is crucial for cell survival during stress. The target of rapamycin (TOR) kinase regulates autophagy as part of two distinct protein complexes, TORC1 and TORC2. TORC1 negatively regulates autophagy according to nitrogen availability. In contrast, TORC2 functions as a positive regulator of autophagy during amino acid starvation, via its target kinase Ypk1, by repressing the activity of the calcium-dependent phosphatase calcineurin and promoting the general amino acid control (GAAC) response. Precisely how TORC2-Ypk1 signaling regulates calcineurin within this pathway remains unknown. Here we demonstrate that activation of calcineurin requires Mid1, an endoplasmic reticulum-localized calcium channel regulatory protein implicated in the oxidative stress response. We find that normal mitochondrial respiration is perturbed in TORC2-Ypk1-deficient cells, which results in the accumulation of mitochondrial-derived reactive oxygen species that signal to Mid1 to activate calcineurin, thereby inhibiting the GAAC response and autophagy. These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27899413</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1540-8140</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>215</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of cell biology</Title>
<ISOAbbreviation>J Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>779-788</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Autophagy is a catabolic process that recycles cytoplasmic contents and is crucial for cell survival during stress. The target of rapamycin (TOR) kinase regulates autophagy as part of two distinct protein complexes, TORC1 and TORC2. TORC1 negatively regulates autophagy according to nitrogen availability. In contrast, TORC2 functions as a positive regulator of autophagy during amino acid starvation, via its target kinase Ypk1, by repressing the activity of the calcium-dependent phosphatase calcineurin and promoting the general amino acid control (GAAC) response. Precisely how TORC2-Ypk1 signaling regulates calcineurin within this pathway remains unknown. Here we demonstrate that activation of calcineurin requires Mid1, an endoplasmic reticulum-localized calcium channel regulatory protein implicated in the oxidative stress response. We find that normal mitochondrial respiration is perturbed in TORC2-Ypk1-deficient cells, which results in the accumulation of mitochondrial-derived reactive oxygen species that signal to Mid1 to activate calcineurin, thereby inhibiting the GAAC response and autophagy. These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation.</AbstractText>
<CopyrightInformation>© 2016 Vlahakis et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vlahakis</LastName>
<ForeName>Ariadne</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3452-9925</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lopez Muniozguren</LastName>
<ForeName>Nerea</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2007-3819</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 tpowers@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM007377</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Cell Biol</MedlineTA>
<NlmUniqueID>0375356</NlmUniqueID>
<ISSNLinking>0021-9525</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015220">Calcium Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C090463">MID1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D019703">Calcineurin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019703" MajorTopicYN="N">Calcineurin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015220" MajorTopicYN="N">Calcium Channels</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27899413</ArticleId>
<ArticleId IdType="pii">jcb.201605030</ArticleId>
<ArticleId IdType="doi">10.1083/jcb.201605030</ArticleId>
<ArticleId IdType="pmc">PMC5166500</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dev Cell. 2009 Jul;17 (1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Sep;24(18):2918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jun 1;30(11):2101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 9;280(36):31582-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jun 13;5:4153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24923787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Jul-Aug;3(4):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17377488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109 (5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Nov;1787(11):1352-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19527680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Aug;15(8):4497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7623840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2012 Dec 11;23(6):1129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Jul 11;194(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2003 Mar-Apr;9(3-4):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Seikagaku. 2013 Mar;85(3):174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2005 Nov 15;311(1):84-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16202999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jan;47(1):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jun;11(6):2103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Oct;6(7):879-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20647741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Aug;188(4):859-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Oct 18;147(2):435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 1;20(21):5971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 May 25;209(4):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25987606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Apr 2;153(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11285273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Dec 1;25(24):3962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1985 Dec;143(3):216-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3006623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014;10 (11):2085-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Sep;287(3):C580-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2013 Jul;36(1):7-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Sep;5(9):2349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3915540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2015 Nov;14(11):1135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26385891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Nov 25;159(4):613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Feb;14(2):1160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8289797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 1;278(31):28831-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Oct;7(10 ):1245-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Dec;14 (12 ):8259-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7526155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 15;11(24):3432-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1055-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20153290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32386-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Feb;14 (2):477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2004 Feb 15;293(2):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1982 Jul;151(1):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7045078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 9;368(19):1845-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23656658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 25;286(12):10744-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jul 23;358(6384):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1322496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Feb 13;6(3):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Nov 15;22(22):4528-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23804751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2014 Jan 16;5:e997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24434520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Oct 4;271(40):24989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798780</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
</region>
<name sortKey="Lopez Muniozguren, Nerea" sort="Lopez Muniozguren, Nerea" uniqKey="Lopez Muniozguren N" first="Nerea" last="Lopez Muniozguren">Nerea Lopez Muniozguren</name>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27899413
   |texte=   Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27899413" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020